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Abstract

The making and breaking of nanometer-scale contacts is an essential operation in
MEMS devices with moving parts. The behavior of contacts in this size range is not
well understood, especially if viscoelastic materials are involved. This article describes
shear modulation spectroscopy, a new scanning force microscope technique especially
well suited for quantitative studies of nanometer-scale contacts to viscoelastic materials
such as lubricants and some polymers. The technique is illustrated by measurements
and analysis of contacts to poly(vinylethylene).

1 Introduction

The operation of MEMS devices with moving parts requires the making and breaking
of contacts with typical dimensions of 10-100 nm and loads in the nanoNewton to
milli-Newton range. In general, these contacts may be subjected to both normal and
shear loading. They may, or may not, be lubricated and the lubricant film may be as
thin as a single monolayer. Recent theoretical [1,2] and experimental studies [3] sug-
gest that continuum theories of contact mechanics [4] should be applicable to MEMS
size contacts. However, factors such as adhesion [2,5] and capillarity [6] contribute
more significantly compared to macroscopic contacts. In addition, other important
factors, such as microslip [7] and viscoelastic response [8], may be altered when the
contacts have dimensions comparable to the microstructure or molecular dimensions.
A major experimental difficulty in the study of small contacts is the accurate measure-
ment of the contact area.

In this article, we describe shear modulation spectroscopy (SMS). SMS is imple-
mented with a scanning force microscope and provides quantitative information about
nanometer-scale contacts including changes during loading and unloading. Emphasis
is on contacts to viscoelastic materials. We also discuss the application of contact me-
chanics models that include viscoelastic response. The article concludes with a few
remarks about the implications for MEMS technology.
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2 Basics of Shear Modulation Spectroscopy

Shear modulation spectroscopy [7] is an extension of the well-developed mechanical
modulation techniques used to measure the viscoelastic and rheological properties of
bulk polymers [9] and has been used previously to study elastic behavior in scanning
force microscope contacts [10-13]. Similar measurements on much larger area contacts
have been made with the surface forces apparatus [14,15] and microscopic sphere-on-
flat contacts [16]. SMS is also closely related to friction loop methods [17] and to force
modulation spectroscopy [18,19].

Both SMS, which uses shear modulation, and force modulation spectroscopy,
which modulates the contact normal to the surface, provide information about the vis-
coelastic properties of the contact. However, SMS has two significant advantages over
force modulation spectroscopy. First, since the normal load is constant in SMS, the
contact area does not change during a modulation cycle. This simplifies the analysis.
Second, during normal modulation, the end of the cantilever moves up and down along
a circular arc. Thus, the contacting tip always has a small component of shear motion
parallel to the surface. As shown recently by Mazeran and Loubet [20], this combined
normal and lateral motion significantly complicates quantitative interpretation of the
force modulation spectroscopy data.

2.1 SHEAR MODULATION SPECTROSCOPY

Figure 1a illustrates how SMS is carried out with a scanning force microscope. The
scanning force microscope tip (height H) is placed in contact with a viscoelastic sam-
ple above point O under applied load FN. The substrate is then displaced parallel to its
surface by distance xo to O’. This causes a displacement of the tip’s contact point by xt

= xo - xc where xc is the distortion of the sample surface relative to point O’. This dis-
tortion results from the shear force Fs = κΘ xt, where κΘ is the torsional stiffness of the
cantilever. For a viscoelastic material and oscillatory sample displacement xo(t) = Xo-
exp(iωt), the contact of the tip on the surface is displaced by xt = Xtexp[i(ωt - α)]
which has a phase lag α. The experimentally measured quantities are the amplitude
and phase of the tilt angle Θ of the tip; Θ = xt /H = Θoexp[i(ωt - α)] where Θo ≡ Xt/H
and Xt is the amplitude of the tip motion at the contact. The shear stiffness of the con-
tact is κc ≡ dFs/dxc. For the case of an elastic Hertzian contact with no slip, κc = 8G*a
where a is the effective radius of the contact.

Figure 1b shows the relationships between the amplitudes and phases of the
various motions. Starting from the condition xt = xo - xc, the amplitude and phase of
the contact displacement can be expressed in terms of the measurable quantities as
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Figure 1.  (a) Schematic diagram of the scanning force microscope shear meas-
urement. (b) Relationship between the amplitudes and phases.
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The phase angle β is the more robust quantity. It requires only a relative measurement
of the displacement amplitude of the tip whereas determination of Xc requires absolute
knowledge of Xo, which is typically only a few tenths of a nanometer.

2.2 EXPERIMENTAL ASPECTS OF SMS

SMS can be implemented on any scanning force microscope capable of making quan-
titative measurements of the torsional and bending motions of the cantilever force de-
tector. We used a scanning force microscope that has been described previously [21]
and is based on the optical lever method. The sample is oscillated laterally with respect
to the cantilever by applying a small sinusoidal modulation, typically ≈ 0.1-0.2 nm, to
the piezoelectric scan tube. This amplitude is well below the value required to initiate
sliding, except as the contact initially forms and just prior to release [7]. The photodi-
ode detector output is analyzed with a lock-in amplifier to obtain the amplitude Xt and
phase α of the torsional response of the scanning force microscope cantilever. The am-
plitude of the shear force acting on the tip can be obtained from |Fs| = κΘ Xt if the tor-
sional force constant κΘ is known. For the cantilevers we used κΘ ≈ 67H where H ≈ 4
µm is the tip height [22].

The poly(vinylethylene) (PVE) samples discussed below were made from the same
96% 1,2-polybutadiene material with 134,000 number-average molecular weight used
in a previous study of the bulk mechanical properties [23]. From this study, the meas-
ured bulk relaxation time at 289 K is τb ≈ 60 µs. Young's modulus was measured by
indentation to be in the range 2-4 MPa. Films of PVE were cast onto glass slides from
toluene solution, dried in air for about 10-15 min, followed by vacuum drying for an-
other 10-20 min. Since the surface properties of the PVE samples were found to vary
slowly for several days following preparation [7], only freshly prepared samples were
used to obtain the data presented below.

2.3 SMS MEASUREMENTS ON A VISCOELASTIC MATERIAL

Figure 2 shows the viscoelastic shear response measured on a freshly prepared PVE
sample during a force-distance curve measurement [7]; i.e., during the formation,
loading, unloading, and rupture of a contact [24]. The origin for the time axis is taken
as the point of maximum applied load (C). The shear modulation amplitude was Xo ≈
0.15 nm. The lower graph displays the force-distance curve. The sample was moved
toward the tip at constant speed starting out of contact. Jump-to-contact occurs at point
A (t = -36 s). The approach is continued until the predetermined maximum load at C (t
= 0 s). Then the direction of motion is reversed until the tip and sample separate at the
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Figure 2.  Shear response of a freshly prepared PVE sample during a loading
and unloading cycle.  The modulation frequency is 1.0 kHz and the modulation
amplitude is about 0.13 nm. Lower panel: force-distance curve. Upper panel:
amplitude Xt and phase lag α of tip motion on the surface. (From [7].)

pull-off point E (t = 164 s). The rounding just prior to pull-off is typical of both macro-
scopic and scanning force microscope-scale viscoelastic contacts [25,26]. The magni-
tude of the pull-off force and the degree of rounding depend on the speed, again in-
dicative of the viscoelastic nature of the contact. For times between points B and D, the
contact was under compressive load; otherwise, the load was tensile.  The force-
distance curve was identical with and without shear modulation indicating that the
applied shear modulation does not significantly modify the evolution of the contact.

The upper part of Fig. 2 shows the measured displacement Xt and phase α of
the scanning force microscope tip. At jump-to-contact (A), Xt increases suddenly to
about 1.3 pm, then more slowly to about 2.4 pm at maximum load (C). Xt continues to
increase slightly until tmax ≈ 55 s, long after maximum load was reached, then gradu-
ally decreases. Even at its maximum Xt << Xo. After the maximum, Xt decreases with
the rate of decrease becoming large just as the force-distance curve begins to round
significantly prior to pull-off (E). Phase response mirrors the amplitude response: α
increases rapidly to about 60°, then decreases smoothly, reaching a minimum of about
43° at the same time Xt reaches tmax. For both amplitude and phase response, the rate of
change during jump-to-contact (at A) and pull-off (at E) is limited by the overall re-
sponse of the measuring system.  The large decrease in phase just after A and the in-
crease just prior to E may indicate that sliding begins just prior to pull-off.

The maximum value of Xt and the corresponding minimum in phase lag α always
occur after the contact was under tension (i.e., FN < 0), even for the slowest speeds (50
pm/s). This delayed maximum seems to be a characteristic of viscoelastic materials and
was not observed for any of the elastic materials we have also studied; e.g., diamond,
mica, silicone [27].

Measurements on PVE were carried out for frequencies over the range 50 Hz ≤ f ≤
1.2 kHz and were all qualitatively similar to the results for 1.0 kHz (Fig. 2) except that
Xt and α varied with frequency as expected for a viscoelastic character of the contact
[9].
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3 Interpretation  of Shear Modulation Spectroscopy Data

This section begins with a discussion of how the contact radius can be determined from
the SMS data. The variation of the contact area during loading and unloading is then
explained qualitatively in terms of creep using the formalism for contact of viscoelastic
bodies developed by Ting [28]. Finally, a more quantitative description that includes
interfacial adhesion is evaluated.

3.1 DETERMINATION OF THE CONTACT RADIUS

Perhaps the simplest way to extract information about the materials properties of
the contact from the data like that in Fig. 2 is to model the contact using linear springs
and dashpots. The simplest mechanical models of this type are the Maxwell and Voigt
models [9,29]. We discuss the latter here. In the Voigt model, the viscoelastic compo-
nent of the contact is described by a linear spring of stiffness κc in parallel with a
dashpot with damping coefficient rc. The cantilever is modeled by a linear spring of
stiffness κΘ connected in series with the Voigt model. The stiffness of the contact is
given in terms of the measurable quantities by
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This result was used previously to determine the stiffness of the PVE contact and its
increase to the bulk value as the sample aged [7]. The stiffness of the contact is also
related to the effective storage shear modulus G* by [4]

κ c G a= ∗8 .  (4)

Since, as already pointed out, Xt/Xo << 1, eqns. (3) and (4) can be combined to yield
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Assuming constant G*, eqn. (5) shows that the torsional response of the force sensor is
a measure of the contact radius a. This has been pointed out previously for elastic ma-
terials [11-13]. This is an important result because the contact radius is one of the most
difficult characteristics of a nanometer-scale contact to determine experimentally. Fig-
ure 3 is a plot of (Xt/Xo)cosα calculated from the data in Fig. 2 for times between jump-
to-contact and pull-off. The maximum load of 0.4 nN occurs at about 36 s while the
maximum in (Xt/Xo)cosα is at about 85 s. The shaded areas mark regions where the
contact may be sliding. The solid curve is a ninth order polynomial fit to the data. Fig-
ure 3 shows that the delayed maximum in Xt implies that a reaches its maximum value
well after the maximum load has been applied.

3.2 VISCOELACTICITY AND CONTACT AREA

A qualitative understanding of the origin of the delayed maximum in contact area
is provided by the work of Ting [28,30]. Following Lee and Radok [31], Ting showed
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Figure 3.  Area function vs. contact time. The maximum load occurs at 36 s and
the maximum contact area at about 85 s. The shaded areas indicate time periods
where the contact may be sliding.

that the solutions of the Hertzian contact problem can be extended to linear viscoelastic
materials if the elastic constants are replaced by corresponding integral operators ob-
tained from the viscoelastic stress-strain relations. For example, if the time evolution of
the contact force FN(t) is known, the contact radius is given by

a t R t t
F t

t
dt

t
nb g b g b g3

0

3

8
= −

∂

∂zΦ '
'

'
' (6)

where R is the radius of the contacting body and the effective elastic shear modulus G*
has been replaced by an integral operator involving the creep compliance Φ(t). In con-
trast to the elastic case, the contact radius now depends on the history of loading

through ∂ ∂F t tN b g . As discussed by Ting, care must be taken in determining the

upper limit of integration in Eqn. (6) once the area has begun to decrease. Figure 4
gives an example for the case of a rigid spherical indenter on a Maxwell solid. Similar
results are obtained for a Voigt model. In this example, the load (Fig. 4a) is a half-
sinusoid; FN(t) = Fosin(t/τ) where τ is the relaxation time of the contact. The contact
size (Fig. 4b) continues to grow by creep even after the load has begun to decrease. The
time tmax at which the maximum contact radius occurs depends on the ratio ∆t/τ where
∆t is the total contact time. Fig. 4c shows this dependence. The general trend is for tmax

to occur closer to the time of maximum load as ∆t is increased. As ∆t decreases, tmax

approaches ∆t. In Fig. 3, the maximum occurs roughly one-
third of the way between the time of maximum load and pull-off. From Fig. 4c, we see
that this implies that τ ≈ ∆t.

The theory of Ting is too simple to provide a quantitative description of Fig. 3. It
neglects both adhesion, which is responsible for the pull-off force, and dispersion
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Figure 4. Contact of a rigid sphere with a Maxwell solid. (a) Sinusoidal applied
load applied for time ∆t. (b) Contact radius a as a function of contact time. (c)
tmax as a function of the total contact time.

forces, which cause the jump-to-contact. Additionally, freshly prepared PVE is so
compliant that, even for the small forces used here, the usual approximation that the
diameter of the contact is much smaller than the probe is not satisfied. Appropriate
expressions for an elastic indentation by a spherical punch are given by Sneddon [32]
and Maugis [33]. We know of no treatment for the case of shear. The contact radius for
FN can be estimated from a Sneddon analysis of the contact and shows that the contact
radius at maximum load in Fig. 2 is approximately equal to the nominal tip radius.

Johnson, Kendall and Roberts (JKR) [34] and others [35,36] have shown how ad-
hesion can be incorporated into the theory of elastic contact. Tirrell and co-workers
[37] have recently attempted to extend JKR theory to include the effects of linear vis-
coelasticity. They show that the analog of eqn.(6) is

8
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where W is the work of adhesion and Ψ(t) is the stress relaxation function. Equation
(7) is only valid as long as the contact radius is increasing; i.e., t < tmax. Equation (7)
was found to give a good description of contacts between 0.7-1.2 mm diameter spheres
of diblock copolymers of poly(ethylene)-poly(ethylene-propylene) [37].

We used the data for PVE to evaluate eqn. (7) for the case of nanometer-scale con-
tacts. FN(t) was taken directly from Fig. 2. The product RW was treated as a parameter
for the evaluation of the right hand side (RHS) of eqn. (7). The optimum value (RW ≈
1.85 N) was taken as that which produces a discontinuity in the RHS at the measured
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Figure 5.  LHS (•’s) and RHS (�’s) of eqn. (7) as a function of the applied load.
The shaded region marks the load range for which the contact area is decreas-
ing.

value of the pull-off force. The nominal R of the tips used to obtain the data in Fig. 2 is
expected to be in the range 20-50 nm. Thus, RW ≈ 1.85 nN corresponds to W ≈ 40-90
mJ/m2, which is a reasonable value [5]. The resulting RHS is plotted as the squares in
Fig. 5 for the range of FN(t) for which the contact area (Fig. 3) is increasing.

The left hand side (LHS) of eqn. (7) was evaluated using the ninth order polyno-
mial fit shown in Fig. 2 and assuming that the stress relaxation functions has a power
law time dependence of the form

Ψ t G toa f = ∗ β   (8)

where Go
∗  is zero-frequency value of the effective shear modulus and β is the power

law exponent. The LHS was evaluated analytically for various values of β. The best
value of β was taken as that for which the contributions to the LHS for the loading (t <
0 s in Fig. 2) and unloading (t > 0 s) parts of the force-distance curve were identical
over the widest range. The resulting LHS is plotted as the dots in Fig. 5 for β = -0.6.

The LHS and RHS were normalized at FN = 0 N by adjusting Go
∗ . The resulting Go

∗  ≈
2 MPa is consistent with the measured bulk storage modulus assuming a Poisson ratio
of 0.5.

It is certainly encouraging that physically reasonable values of the parameters result
from applying eqn. (7). However, as can be seen in Fig. 5, the LHS and RHS have sig-
nificantly different slopes after the maximum load. There is also a large difference in
their functional forms during the initial phases of the contact formation. Clearly, the
model expressed in eqn. (7) is incomplete. The analysis was also carried out using the
stress relaxation functions of the Maxwell and Voigt model but no significant im-
provement was obtained. What is missing? First, the model assumes that both the in-
terfacial and bulk viscoelasticity properties are identical. Since the polymer molecules
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are expected to take up different configurations near the surface [38,39], this may not
be a good assumption, particularly since we know that the properties of the PVE sam-
ples were continuing to change with sample age [7]. Second, the interfacial adhesion
has been assumed to be constant throughout. This will not be true in general, especially
when the contact area is changing rapidly. Barquins [25], Barquins and Maugis [40],
and Greenwood and Johnson [41] have discussed this from the viewpoint of fracture
mechanics but neglected any effects due to creep. These models have also been applied
to qualitative interpretation of scanning force microscope force distance curves [26].
Whether or not the conditions required by these theories can be realized experimentally
has been questioned [37]. Third, the full range of data in Fig. 3 cannot be analyzed
because eqn. (7) does not apply when the contact area is decreasing. Fourth, the analy-
sis given above is only valid if the contact radius a is much smaller than the radius R
of the tip. Maugis [33] has shown how to extend JKR theory to this case for elastic, but
not viscoelastic, materials. It is not known at present whether all of these effects can be
brought together in a single comprehensive theory of viscoelastic contacts with adhe-
sion.

4 Implications for MEMS

The results described in this paper provide a basis for describing the response of
MEMS-scale contacts during their formation and separation. The behavior can be
complex and rate dependent if adhesion and/or viscoelastic materials, such as lubri-
cants, are involved. For viscoelastic materials, creep can cause the maximum contact
area to continue to increase long after the maximum load is reached, even when adhe-
sion is neglected. Adhesion increases the force required to break the contact and, when
combined with creep, can substantially increase this pull-off force. The behavior can be
complex and is not quantitatively understood at present.

The new technique of Shear Modulation Spectroscopy, described in this paper, of-
fers the possibility to substantially improve our understanding of the mechanics of
nanometer-scale contacts.
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